Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air
نویسندگان
چکیده
BACKGROUND Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. METHODS Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. RESULTS Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. CONCLUSIONS The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated.
منابع مشابه
A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude
At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...
متن کاملContrasting pressure-support ventilation and helium-oxygen during exercise in severe COPD.
Helium-oxygen mixtures and pressure-support ventilation have been used to unload the respiratory muscles and increase exercise tolerance in COPD. Considering the different characteristics of these techniques, we hypothesized that helium-oxygen would be more effective in reducing exercise-induced dynamic hyperinflation than pressure-support. We also hypothesized that patients would experience gr...
متن کاملMethods for evaluation of helium/oxygen delivery through non-rebreather facemasks
UNLABELLED BACKGROUND Inhalation of low-density helium/oxygen mixtures has been used both to lower the airway resistance and work of breathing of patients with obstructive lung disease and to transport pharmaceutical aerosols to obstructed lung regions. However, recent clinical investigations have highlighted the potential for entrainment of room air to dilute helium/oxygen mixtures delivere...
متن کاملExercise Tolerance Breathing a Low Density Gas Mixture, 3 5 % Oxygen a N D Air I N Patients with Chronic Obstructive Bronchitis
1. We have examined the effects of (a) reducing the density of the inspired gas and of (b) increasing inspired oxygen concentration on the exercise performance of eight men with chronic obstructive bronchitis (COB). 2. Each subject performed two types of exercise test breathing three different gas mixtures: air, 35% oxygen in nitrogen and 21% oxygen in helium. The exercise capacity, ventilation...
متن کاملEffect of combined recompression and air, oxygen, or heliox breathing on air bubbles in rat tissues.
The fate of bubbles formed in tissues during the ascent from a real or simulated air dive and subjected to therapeutic recompression has only been indirectly inferred from theoretical modeling and clinical observations. We visually followed the resolution of micro air bubbles injected into adipose tissue, spinal white matter, muscle, and tendon of anesthetized rats recompressed to and held at 2...
متن کامل